3,538 research outputs found

    Automated Error-Detection and Repair for Compositional Software Specifications

    Get PDF

    Instrumental effects on the temperature and density derived from the light ion mass spectrometer

    Get PDF
    An expression for the flux into a retarding potential analyzer (RPA) is derived which takes into account the instrumental effect of a dependence on energy of the solid angle of the acceptance cone. A second instrumental effect of a limited bandpass is briefly discussed. Using the (LIMS) instrument on SCATHA, it is shown that temperatures and densities derived without considering the effect of the solid angle dependence on energy will be too low, dramatically so for E(t) E(1), where E(1) is the e folding distance of the solid angle dependence and E(t) is the thermal energy of the plasma. For E(t) E(1), there is effectively no impact on the derived temperatures and densities if the solid angle effect is ignored

    Kohoutek, photometric photography experiment (S233)

    Get PDF
    The final results of the Skylab 4 experiment S233, Kohoutek photometric photography experiment, which undertook a series of visible light photographs suitable for photometry and for a photographic history of Comet Kohoutek are described. The experiment concept, the data reduction method, and the results obtained are discussed

    Electron angular distributions above the dayside auroral oval

    Get PDF
    An electrostatic analyzer was employed on the Ariel 4 satellite to determine pitch angle distributions of electron intensities over the dayside auroral oval. Two major precipitation zones were encountered: an equatorward zone of broad spectra with intensities of approximately 1000 electrons/(sq cm-sec-sr-eV) and a poleward zone, the polar cusp, with intensities typical of those of the magnetosheath. Angular distributions within the equatorward zone are generally isotropic outside of the atmospheric backscatter cone. The precipitation mechanism appears to be pitch angle scattering near the distant magnetic equator. In contrast, pitch angle distributions within the polar cusp are often found to be strongly field aligned with intensities within the atmospheric loss cone greater by factors of approximately 10 than the mirroring intensities. These distributions are qualititatively similar to those for the inverted V precipitation events at later local times, and probably share a common acceleration mechanism with the inverted V phenomenon

    The definition and specification of the near earth environmental criteria for spacecraft thermal design

    Get PDF
    The variation of the earth's thermal and albedo radiation received by a near-earth orbiting space vehicle or space payload as a result of temporal variation of the earth atmosphere is discussed. A statistical study of current satellite data for determining probability distributions is proposed. With these distributions the thermal designer can define confidence levels on predicted temperature ranges which are compatible with engineering models for use in design, failure probabilities, and spacecraft cost estimates. Use of the distributions in environmental criteria guidelines is also considered

    Energization pf polar-cusp electrons at the noon meridian

    Get PDF
    Observations gained with an electrostatic analyzer on board the low altitude, polar orbiting Aeriel 4 satellite demonstrate that the directional, differential spectra of polar-cusp electron intensities are regulated by the sign of the interplanetary magnetic field (IMF) elevation angle. In the energy range 200 is approximately less than E is approximately less than 700 eV, spectra of polar cusp electron intensities were not observed to respond to changes in the sign of the IMF elevation angle. At greater densities, spectra were found to be significantly harder when the IMF angle of elevation was greater than 0 deg, with a factor of approximately 10 typical for 2-keV electron intensities. These enhanced intensities appear to be localized within approximately a one hour sector of magnetic local time centered on the noon meridian

    Electromagnetic Scattering by Cylinders - An Introduction

    Get PDF
    Investigating electromagnetic scattering by cylinders using Rayleigh-Gans theor

    ADJUSTABLE -TERM FINANCING OF FARM LOANS

    Get PDF
    Firm-level simulation is used to analyze farm financial performance with adjustable-rate, adjustable-term, and fixed-rate financing. Adjustable-term financing is accomplished by changing the term of the loan, instead of payment size, when interest rates change. Simulation results indicate that the adjustable-term loan is an innovation which reduces the cash flow destabilizing effects of volatile interest rates.Agricultural Finance,

    COEVOLUTION AND GENETIC DIVERSITY IN GRASS-ENDOPHYTE SYMBIOSES

    Get PDF
    Symbioses between cool-season grasses (Subfamily Pooideae) and endophytic fungi in the genera Epichlo and Neotyphodium straddle a continuum of interactions from antagonistic to highly mutualistic. Although these two genera of endophytes are closely related, Neotyphodium endophytes are strictly seed-transmitted and provide many physiological and defensive benefits to their hosts, while Epichlo spp. have an obligately sexual contagious stage wherein host inflorescences are replaced by fungal sexual structures (stromata), effectively sterilizing the plant. Between these two extremes of interactions are Epichlo spp. with a mixed strategy, where some grass tillers are sterilized while others develop normally and yield healthy endophyte-infected seeds. These symbioses offer a unique opportunity to dissect evolutionary mechanisms that may drive movement along this continuum. The research presented characterizes distinct hybridization processes in endophytes and grasses that result in the generation of astounding genetic diversity for the symbiosis. Interspecific hybridization via hyphal anatomosis is a common feature of Neotyphodium endophytes, and may promote mutualism by combining suites of defensive alkaloid genes and ameliorating the adverse evolutionary effects of an asexual lifestyle. My results demonstrate that several genetically distinct hybrid endophytes infect grass species in tribe Poeae. Further, I show that a highly mutualistic asexual endophyte infecting tall fescue (=Festuca arundinaceum Schreb.), Neotyphodium coenophialum, also infects two closely related and interfertile relatives of this host. My findings suggest that this seed-borne endophyte may have been introgressed into these grasses through sexual grass hybridization events. These findings highlight interspecific hybridization as a means of generating tremendous genetic variability in both endophytes and their hosts, thus magnifying the adaptive evolutionary potential of these symbioses. Further, I establish a phylogenetic framework for grasses naturally harboring Epichlo and Neotyphodium endophytes. I show that patterns of genetic divergence among grass lineages are emulated by those of their fungal symbionts. These results suggest that endophytes have co-evolved with grasses in subfamily Pooideae, and may have played a critical role in the evolutionary success and radiation of this group of grasses

    TARGETED ILLUMINATION STRATEGIES FOR HYDROGEN PRODUCTION FROM PURPLE NON-SULFUR BACTERIA

    Get PDF
    The movement towards a more sustainable energy economy may require not only the generation of cleaner fuel sources, but the conversion of waste streams into value-added products. Phototrophic purple non-sulfur bacteria are capable of metabolizing VFAs (volatile fatty acids)and generate hydrogen as a byproduct of nitrogen fixation using energy absorbed from light. VFAs are easily produced from dark anaerobic fermentation of food, agricultural, and municipal wastes, which could then be fed into photobioreactors of purple bacteria for hydrogen production. The process of photofermentation by purple bacteria for hydrogen production remains attractive due to the capability of reaching high substrate conversions under mild operating conditions, but increasing the efficiency of converting light energy into hydrogen remains challenging. Purple bacteria cannot utilize the entire solar spectrum, and the dominant region of absorption lies in the near-infrared region above 800 nm. In this work, the model purple non-sulfur bacteria Rhodopseudomonas palustris was used to study different strategies to increase light utilization and hydrogen production. Near-infrared LED arrays were selected to match the target bacteriochlorophyll absorption range, and were tested to be used as a sole illumination source for photofermentation. Additionally, plasmonic nanoparticles with resonant frequencies matching bacterial absorbance were added in solution to increase light utilization through scattering and near field electric enhancement effects at intensities around 100 W/m2 . Both of these approaches proved to increase cellular growth rate and hydrogen production, which opens the door to utilizing more advanced photonic structures for use in bacterial phototrophic processes
    corecore